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Abstract

This paper proposes discrete Ricci curvature on financial correlation networks
as a geometric indicator of systemic fragility. The framework conceptualizes the
economy as a differentiable manifold equipped with a Riemannian metric, where
curvature encodes whether small perturbations self-correct (positive curvature) or
self-amplify (negative curvature). Building on Mach’s relational ontology and Ein-
stein’s geometrization program, a testable hypothesis is derived: aggregate network
curvature correlates with financial stress and serves as an indicator of systemic
fragility. Dimensional homogeneity is addressed through non-dimensionalization,
candidate conservation principles are proposed, and a complete worked example is
provided. An implementation architecture enables empirical validation. The frame-
work is offered as a research program rather than a finished theory.

Keywords: Geometric economics, Riemannian manifolds, Ricci curvature, finan-
cial crises, economic networks, information geometry
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1 Introduction
The application of differential geometry to economic systems has a long but discontinuous
history. From Irving Fisher’s explicit adoption of thermodynamic concepts (Mirowski,
1989) through Samuelson’s exploration of revealed preference geometry (Samuelson, 1950)
to recent work on gauge-theoretic economics (Malaney, 1996; Vázquez and Farinelli,
2009), the geometric approach has produced isolated insights without coalescing into
a unified framework.

This paper proposes such a unifying framework—not as a finished theory, but as a
minimal foundational structure upon which specific models can be built, tested, and re-
fined. The approach presented here synthesizes two intellectual traditions: Ernst Mach’s
relational ontology and Albert Einstein’s geometric theory of gravitation. This synthesis
addresses specific limitations of conventional economic modeling while remaining empir-
ically grounded.

1.1 Scope and Claims

Before proceeding, it is important to clarify what this paper does and does not claim:
What is claimed:

• Discrete Ricci curvature on financial networks captures structural fragility not vis-
ible in simple correlation statistics

• Curvature provides a geometric interpretation of systemic risk that complements
existing measures

• The framework generates testable hypotheses about the relationship between net-
work geometry and financial stress

What is not claimed:

• That curvature definitively predicts crises with positive lead time (this is an empir-
ical question)

• That the economy literally is a curved spacetime

• That this framework supersedes existing approaches to systemic risk

The paper makes three contributions. First, a minimal axiomatic framework is ar-
ticulated (Section 2) providing a common language for geometric economics. Second,
testable hypotheses are derived (Section 6) connecting manifold curvature to financial
crisis dynamics. Third, an implementation architecture is specified (Section 8) enabling
empirical validation.

1.2 The Problem with Neoclassical Foundations

Modern macroeconomics rests on foundations that are increasingly recognized as prob-
lematic. Two issues are particularly relevant for present purposes.

The Absolutism of Value. Neoclassical economics treats prices and values as prop-
erties of individual goods, modified by supply and demand but ultimately grounded in
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intrinsic utility or production costs. This absolutism—the idea that value exists indepen-
dently of the entire system of economic relations—mirrors the Newtonian conception of
absolute space and time.

The Flatness Assumption. Standard models implicitly assume that the “space”
of economic possibilities is flat—that is, Euclidean. Optimization problems are solved as
if agents navigate a homogeneous landscape where the distance between any two states
is simply the sum of component differences. This ignores the possibility that economic
space is curved: that some transitions are systematically harder than others, and that
the structure of economic space itself varies across regions and time.

These two problems—absolutism and flatness—are precisely what the Mach-Einstein
synthesis addresses. Mach dissolves absolutism; Einstein introduces curvature.

1.3 Ernst Mach: The Relational Turn

Ernst Mach (1838–1916) was an Austrian physicist and philosopher whose critique of
Newtonian mechanics profoundly influenced Einstein’s development of relativity. Mach’s
central insight was that the concept of “absolute space”—a fixed, immovable background
against which all motion is measured—was metaphysically unjustified and empirically
empty.

“No one is competent to predicate things about absolute space and absolute
motion; they are pure things of thought, pure mental constructs, that cannot
be produced in experience.” (Mach, 1883)

For Mach, all meaningful physical statements must be relational: the motion of a body
can only be defined relative to other bodies, not relative to an invisible, undetectable
absolute frame.

The economic translation is direct: no economic magnitude has intrinsic meaning
independent of its relations to all other magnitudes in the system. A price is not a
property of a good but a relation between goods, expectations, institutions, and the
entire configuration of the economy.

This Machian perspective implies:

1. No Absolute Numéraire: The choice of numéraire (dollar, gold, labor-hour) is
purely conventional; no unit of account has privileged status.

2. Holistic Determination: Each economic variable is determined by all others
simultaneously; partial equilibrium analysis is at best an approximation.

3. Path Dependence: Since relations constitute values, changing the path through
economic space can change the values themselves.

The Malaney-Weinstein work on gauge theory and the index number problem (Malaney,
1996) can be understood as a rigorous implementation of Machian economics: price in-
dices transform under numéraire change exactly like gauge potentials transform under
gauge transformation.
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1.4 Albert Einstein: Geometry as Physics

Albert Einstein (1879–1955) transformed Mach’s philosophical critique into a revolution-
ary physical theory. In General Relativity (1915), Einstein showed that gravitation is not
a force acting across absolute space but a manifestation of spacetime curvature. Mass-
energy determines the geometry of spacetime; geometry determines how objects move.

Several features of Einstein’s approach are relevant for economics:
Intrinsic Geometry. Riemannian geometry describes curved spaces “from the in-

side,” without reference to an embedding in higher-dimensional flat space. This is crucial
for economics: one cannot step outside the economy to view it from an absolute vantage
point.

Curvature as Information. The curvature tensor encodes how parallel transport
around a closed loop fails to return a vector to its original orientation. Positive curvature
makes nearby paths converge; negative curvature makes them diverge. In economic terms,
curvature could encode whether small perturbations are self-correcting (positive) or self-
amplifying (negative).

Local vs. Global. General Relativity is a local theory, yet local curvature has global
consequences. Similarly, economic disturbances may be local in origin but global in effect.

The transfer from physics to economics is not merely metaphorical. The mathematical
apparatus of Riemannian geometry—metrics, connections, curvature tensors—is a general
framework for describing any space with a notion of distance. That economic systems
possess such structure is a hypothesis about appropriate mathematical language, not a
claim about deep ontological similarity to physical spacetime.

1.5 Epistemological Cautions

The transfer of physical concepts to economics carries well-documented risks. Philip
Mirowski’s More Heat than Light (Mirowski, 1989) demonstrated how neoclassical eco-
nomics borrowed mathematical formalism from 19th-century energetics without the un-
derlying conservation laws that justified it.

I am acutely aware of this danger. Several points of caution are essential:
Mathematical Isomorphism ̸= Ontological Identity. That economic systems

can be described using Riemannian geometry does not mean economies are curved space-
times. The same mathematical structure can describe radically different phenomena.

Conservation Laws. In General Relativity, the covariant divergence of the stress-
energy tensor vanishes: ∇µT

µν = 0. This encodes energy-momentum conservation. What
is the economic analogue? This question is addressed directly in Section 4, where candi-
date conservation principles are proposed.

Falsifiability. A theory that can accommodate any observation explains nothing.
The geometric framework must generate testable predictions that could, in principle, be
refuted. This is attempted in Section 6.

Dimensional Consistency. Physical equations must be dimensionally consistent.
Economic variables have diverse units. This is addressed in Section 3, showing how to
construct a well-defined metric from dimensionless quantities.

1.6 Structure of the Paper

The remainder of the paper proceeds as follows:

6



Section 2 presents the formal framework: two axioms, the definition of the economic
manifold, and the core geometric objects.

Section 3 addresses dimensional homogeneity, showing how to construct a mathemat-
ically well-defined metric.

Section 4 proposes candidate conservation principles for geometric economics.
Section 5 provides a complete worked example: a two-sector economy with explicit

metric, curvature calculation, and geodesics.
Section 6 derives testable hypotheses connecting manifold curvature to financial dy-

namics.
Section 7 develops the Fisher information metric as a principled specification.
Section 8 specifies a software architecture for empirical validation.
Section 9 compares geometric economics to existing approaches.
Section 10 discusses limitations and concludes the paper.

2 Theoretical Framework

2.1 Foundational Axioms

The framework rests on two axioms that constrain but do not fully determine the resulting
theory.

Axiom 1 (Relational Ontology). No economic state possesses intrinsic properties inde-
pendent of its relations to all other states in the system.

This axiom, inspired by Mach’s critique of Newtonian absolute space, implies that
prices, values, and productivities are fundamentally relational.

Axiom 2 (Geometric Structure). The economy constitutes a differentiable manifold M
equipped with a Riemannian metric gµν.

This axiom asserts that the space of economic states has sufficient structure for dif-
ferential calculus—continuity, differentiability, and a notion of distance.

Note on Extensibility: The manifoldM may include coordinates beyond directly
observable market variables, representing institutional quality, informational state, or
expectational coordination. This is treated as a methodological option rather than a
foundational axiom—the core framework operates with observable coordinates, with ex-
tensions available as the research program develops.1

2.2 The Economic Manifold

Definition 1 (Economic Manifold). The economic manifold is a tuple (M, g) where:

• M is an n-dimensional smooth manifold

• gµν : TpM× TpM→ R is a Riemannian metric tensor

• Each point p ∈M represents a complete macroeconomic state
1The idea that complete system description may require “hidden” coordinates encoding organizational

structure has precedents in physics, though no commitment is made to any specific dimensional scheme.
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In a minimal specification with n assets:

p = (r1, r2, . . . , rn) (1)

where ri represents the log-return of asset i (dimensionless).

2.3 The Metric: Economic Distance

The metric tensor gµν(p) defines the infinitesimal “economic distance” between neighbor-
ing states:

ds2 = gµν(p) dx
µdxν (2)

Definition 2 (Economic Distance). The quantity ds represents the total “cost” or “resis-
tance” of transitioning from state p to state p+ dp. This cost aggregates multiple friction
sources into a single geometric measure.

The framework is agnostic about the specific form of gµν . Possible specifications
include:

1. Fisher Information Metric: Derived from statistical distinguishability of eco-
nomic states (see Section 7)—the preferred specification.

2. Correlation-Based Metric: Derived from asset return correlations, where dis-
tance inversely relates to correlation.

3. Phenomenological Metric: Calibrated directly from empirical data on transac-
tion costs and market frictions.

2.4 Curvature: Systemic Interdependence

From the metric, the Christoffel symbols are derived:

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) (3)

The Riemann curvature tensor:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (4)

The Ricci tensor and scalar curvature:

Rµν = Rρ
µρν , R = gµνRµν (5)

Definition 3 (Curvature Interpretation). The scalar curvature R measures the local
geometry of economic space:

• R > 0: Nearby trajectories converge; perturbations tend to self-correct

• R < 0: Nearby trajectories diverge; perturbations tend to amplify

• R = 0: Flat space; the idealized limit of independent, non-interacting agents
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2.5 Geodesics: Paths of Least Resistance

Definition 4 (Economic Geodesic). A geodesic on (M, g) is a curve xµ(s) satisfying:

d2xµ

ds2
+ Γµ

νρ

dxν

ds

dxρ

ds
= 0 (6)

Geodesics represent paths that minimize total friction cost between two states. These
are interpreted as the trajectories an economic system would follow if agents collectively
minimized transition costs, given current constraints encoded in the metric. Deviations
from geodesics require additional “force”—policy intervention, technological shocks, or
coordination failures.

Important clarification: In an economy, all actions involve agents making deci-
sions; there is no “external” intervention in the strict sense. “Deviation from geodesic” is
interpreted as deviation from the path that would minimize aggregate friction given the
current institutional structure. Policy changes, for example, alter the metric itself rather
than simply pushing the economy off a geodesic.

2.6 The Minimal Framework: Summary

Table 1: Core Components of the Geometric Framework
Component Mathematical Object Economic Interpretation

State space ManifoldM Space of macroeconomic configurations
Distance Metric gµν Aggregate transition friction
Interdependence Curvature Rµνρσ Self-correcting vs. self-amplifying dynamics
Efficient paths Geodesics Friction-minimizing trajectories

3 Dimensional Homogeneity and Non-Dimensionalization
A rigorous geometric treatment requires that the metric ds2 = gµνdx

µdxν be dimension-
ally consistent. Economic variables have heterogeneous units (dollars, hours, quantities),
so naïvely constructing a metric from raw variables is mathematically ill-defined.

3.1 The Problem

Consider two coordinates: price P (in dollars) and quantity Q (in units). The expression
ds2 = dP 2 + dQ2 mixes incompatible dimensions. What does it mean to add dollars-
squared to units-squared?

3.2 The Solution: Dimensionless Coordinates

The approach taken here works exclusively with dimensionless quantities:

1. Log-returns: For prices Pi(t), define

ri(t) = ln

(
Pi(t)

Pi(t− 1)

)
(7)

Log-returns are dimensionless (pure numbers) and symmetric for gains/losses.
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2. Ratios: For any extensive quantity X, work with X/X0 where X0 is a reference
value (e.g., mean, initial value, or market total).

3. Z-scores: Standardize variables to zero mean and unit variance:

zi =
Xi − X̄

σX

(8)

3.3 The Correlation-Based Metric

For financial applications, the metric is constructed from return correlations. Let ρij be
the correlation between log-returns of assets i and j. Define distance:

dij =
√

2(1− ρij) (9)

This satisfies:

• dij = 0 when ρij = 1 (perfectly correlated assets are “at the same point”)

• dij = 2 when ρij = −1 (perfectly anti-correlated assets are maximally distant)

• dij =
√
2 when ρij = 0 (uncorrelated assets are at intermediate distance)

• Triangle inequality is satisfied

The metric tensor in the space of returns is then:

gij =
∂d

∂ri
∂d

∂rj
(10)

or approximated directly from the correlation structure.

3.4 Dimensional Consistency Check

With dimensionless coordinates ri:

• dri is dimensionless

• gij is dimensionless

• ds2 = gijdr
idrj is dimensionless

• Curvature R has dimensions of (length)−2, but since the “length” is dimensionless,
R is also dimensionless

The framework is now mathematically well-defined.

4 Candidate Conservation Principles
Einstein’s field equations derive their power from energy-momentum conservation: ∇µT

µν =
0. Without an analogous conservation law, geometric economics risks being empty for-
malism. Three candidates are proposed here, with the acknowledgment that this remains
an open problem.
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4.1 Candidate 1: Accounting Identities

National income accounting provides exact conservation laws:

Y ≡ C + I +G+ (X −M) (11)

Income equals expenditure by definition. At the sectoral level:

(S − I) + (T −G) + (M −X) ≡ 0 (12)

Private, government, and foreign balances sum to zero.
Geometric interpretation: These identities constrain the manifold’s structure. Not

all points in “coordinate space” correspond to valid economic states; the economy must
lie on a submanifold satisfying accounting constraints. This is analogous to how gauge
constraints in physics restrict dynamics to a subspace.

4.2 Candidate 2: No-Arbitrage Conditions

In financial markets, no-arbitrage conditions provide differential constraints:

dSt = µSt dt+ σSt dWt (risk-neutral) (13)

Vázquez and Farinelli (2009) showed that arbitrage corresponds to curvature of a
gauge connection. In a no-arbitrage market, certain curvature components vanish. This
directly connects financial constraints to geometry.

Geometric interpretation: No-arbitrage is a “flatness” condition on part of the
economic manifold. Violations of no-arbitrage correspond to non-zero curvature in specific
directions.

4.3 Candidate 3: Budget Constraints and Walras’ Law

Individual budget constraints aggregate to Walras’ Law: the sum of excess demands
across all markets is identically zero:∑

i

pizi(p) ≡ 0 (14)

Geometric interpretation: This is a constraint on the “flow” of economic activ-
ity, analogous to conservation of current in electromagnetism. It does not constrain all
dynamics but ensures consistency of the price system.

4.4 The Status of Conservation in This Framework

It is not claimed here that the conservation problem has been solved. Rather, the proposal
is:

1. Accounting identities provide exact constraints that define the economic subman-
ifold

2. No-arbitrage conditions provide approximate constraints in financial markets

3. Budget constraints provide aggregate flow conservation

A complete geometric economics would derive field equations from these conservation
principles. This remains an open problem for future theoretical development.
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5 Worked Example: A Two-Sector Economy
To demonstrate that the framework produces concrete, calculable results, a complete ex-
ample is presented: a two-dimensional economic manifold with explicit metric, curvature,
and geodesics.

5.1 Setup

Consider an economy with two sectors, represented by log-returns (r1, r2). A metric is
posited where sector 1’s state affects the cost of adjusting sector 2:

ds2 = (dr1)2 + eαr
1

(dr2)2 (15)
where α > 0 is a parameter controlling curvature intensity. This metric captures the

asymmetric interdependence: when sector 1 has positive returns (r1 > 0), adjustments
in sector 2 become more “costly” (larger metric coefficient); when sector 1 has negative
returns, sector 2 adjustments become “cheaper.”

In matrix form:

gij =

(
1 0

0 eαr
1

)
(16)

Note on metric choice: A naïve product metric ds2 = f(r1)(dr1)2 + g(r2)(dr2)2

would be flat (zero curvature) in 2D. Genuine curvature requires coupling between coor-
dinates, as in the metric above where g22 depends on r1.

5.2 Christoffel Symbols

For this metric with g11 = 1 and g22 = eαr
1 , the non-zero Christoffel symbols are:

Γ1
22 = −

1

2g11

∂g22
∂r1

= −α

2
eαr

1

(17)

Γ2
12 = Γ2

21 =
1

2g22

∂g22
∂r1

=
α

2
(18)

5.3 Gaussian Curvature

For a 2D metric of the form ds2 = (dr1)2 + h(r1)(dr2)2 with h = eαr
1 , the Gaussian

curvature is:

K = − 1

2
√
h

d2
√
h

d(r1)2
(19)

Computing:
√
h = eαr

1/2 (20)

d
√
h

dr1
=

α

2
eαr

1/2 (21)

d2
√
h

d(r1)2
=

α2

4
eαr

1/2 (22)

Therefore:
K = − 1

2eαr1/2
· α

2

4
eαr

1/2 = −α2

8
(23)

The scalar curvature in 2D is R = 2K = −α2

4
.
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5.4 Interpretation

The curvature is constant and negative throughout the manifold:

• K = −α2/8 < 0 for any α ̸= 0

• Larger α (stronger coupling) produces more negative curvature

• Negative curvature means nearby geodesics diverge—small perturbations amplify

Economic interpretation: The asymmetric coupling between sectors creates inher-
ent instability. When sector 1 moves, it changes the “landscape” for sector 2, and this
interdependence produces divergent dynamics characteristic of negative curvature. This
is a minimal model of how sectoral coupling can generate systemic fragility.

5.5 Geodesic Equations

The geodesic equations are:

d2r1

ds2
− α

2
eαr

1

(
dr2

ds

)2

= 0 (24)

d2r2

ds2
+ α

dr1

ds

dr2

ds
= 0 (25)

The second equation can be integrated: if u = dr2/ds, then du/ds = −αu(dr1/ds),
giving u = Ce−αr1 for some constant C. This shows that motion in the r2 direction is
suppressed as r1 increases—geodesics “straighten out” in the direction of increasing sector
1 returns.

5.6 Summary

This toy model demonstrates:

1. The framework produces explicit, calculable geometric quantities

2. Cross-coordinate coupling is necessary for non-trivial curvature in 2D

3. Constant negative curvature emerges from asymmetric sectoral interdependence

4. Geodesics can be computed and show economically interpretable behavior

Real applications will use empirically calibrated metrics, but the mathematical ma-
chinery is identical.

6 Testable Hypotheses: Curvature and Financial Dy-
namics

6.1 From Framework to Prediction

From the geometric framework, it follows that regions of negative curvature represent
zones where small perturbations amplify. If financial networks exhibit increasingly neg-
ative curvature during stress periods, this should manifest as measurable signatures in
data.
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6.2 Operationalization via Discrete Ricci Curvature

Direct computation of continuous Riemannian curvature requires a fully specified metric.
However, the curvature concept can be operationalized through discrete Ricci curvature
on financial networks.
Definition 5 (Financial Correlation Network). Let G = (V,E,w) be a weighted graph
where:

• V = {1, . . . , N} represents N financial assets

• E ⊆ V × V represents significant correlations

• wij =
√

2(1− ρij) is the correlation-based distance
Definition 6 (Ollivier-Ricci Curvature). The Ollivier-Ricci curvature of edge (i, j) is:

κ(i, j) = 1− W1(µi, µj)

d(i, j)
(26)

where W1 is the Wasserstein-1 distance and µi, µj are probability measures on the neigh-
borhoods of i and j.

Interpretation: Ollivier-Ricci curvature compares the “transport cost” between neigh-
borhoods to the direct edge distance. Positive curvature indicates the neighborhoods are
closer than the nodes themselves (clustered structure); negative curvature indicates the
edge is a “bottleneck” connecting otherwise distant regions.
Definition 7 (Forman-Ricci Curvature). An alternative, computationally simpler mea-
sure based on combinatorial graph properties. Edges participating in many triangles (3-
cycles) tend to have positive Forman curvature, indicating local clustering. Edges serving
as “bridges” between otherwise disconnected regions have negative Forman curvature, in-
dicating structural bottlenecks. The implementation in the GraphRicciCurvature library
is used.

Recent work suggests Forman-Ricci may have superior empirical properties for some
applications (Samal et al., 2018). It is recommended to compute both measures for
robustness.

6.3 Formal Hypothesis Statement

Hypothesis 1 (Curvature-Fragility Relationship). Let κ̄(t) be the aggregate Ricci cur-
vature of a financial correlation network at time t. Then:

1. Correlation with stress: κ̄(t) correlates negatively with contemporaneous mea-
sures of financial stress (VIX, credit spreads, drawdowns).

2. Structural information: Curvature captures network fragility not explained by
simple correlation statistics (average correlation, network density).

3. Potential leading indicator: Curvature may decline before stress events, but this
is an empirical question requiring careful testing.

Note on predictive claims: Recent empirical work suggests curvature may be
a “crash hallmark” (contemporaneous indicator) rather than a leading indicator with
positive lead time. The hypothesis is framed conservatively: curvature captures structural
fragility, and whether this fragility precedes or accompanies crises is to be determined
empirically. Either result is scientifically valuable.
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6.4 Empirical Predictions

1. Cross-sectional: At any point in time, sectors/assets with more negative local
curvature should have higher subsequent volatility.

2. Time-series: Aggregate curvature should correlate with realized financial stress
measures.

3. Incremental value: Curvature should explain variance in stress not captured by
simpler network statistics.

4. Regime dependence: The curvature-stress relationship may be stronger during
high-volatility regimes.

7 The Fisher Information Metric
The Fisher information metric provides a principled, non-arbitrary specification of gµν ,
connecting the geometric framework to information geometry.

7.1 Construction

Let economic states be parameterized by θ = (θ1, . . . , θn), and let p(x|θ) be the probability
distribution of observable outcomes x given state θ. The Fisher information matrix is:

gij(θ) = E
[
∂ log p(x|θ)

∂θi
· ∂ log p(x|θ)

∂θj

]
(27)

This defines a Riemannian metric with line element:

ds2 = gij(θ)dθ
idθj (28)

7.2 Uniqueness: Chentsov’s Theorem

The Fisher metric is distinguished by Chentsov’s theorem: it is the unique Riemannian
metric on statistical manifolds (up to a constant multiple) that is invariant under sufficient
statistics. This means:

1. The metric respects the intrinsic information content of the data

2. No information is lost or distorted by the geometric representation

3. The choice of metric is not arbitrary but forced by invariance requirements

This provides the strongest possible theoretical foundation for metric specification.
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7.3 Example: Multivariate Gaussian

For returns r ∼ N (µ,Σ) with parameters θ = (µ,Σ), the Fisher metric on the mean
parameters (holding covariance fixed) is:

gij = (Σ−1)ij (29)

The inverse covariance matrix—the precision matrix—is the natural metric. This
has an intuitive interpretation: directions of high precision (low variance) have large
metric coefficients, meaning small changes in those directions are “costly” in information-
theoretic terms.

7.4 Curvature of Gaussian Manifolds

For a univariate Gaussian with θ = (µ, σ):

g =

(
σ−2 0
0 2σ−2

)
(30)

The scalar curvature is constant: R = −1/2. The negative curvature indicates that
statistical manifolds of Gaussian distributions are intrinsically hyperbolic—small param-
eter changes lead to diverging probability distributions.

For multivariate Gaussians, curvature depends on the covariance structure and can
vary across the manifold.

7.5 Connection to Economic Distance

The Fisher metric interprets economic distance as statistical distinguishability:

• Two states are “close” if their observable distributions are hard to distinguish

• Two states are “far” if observations readily discriminate between them

This connects naturally to information economics and rational inattention: agents
face costs proportional to the statistical distance between the distributions they must
distinguish.

7.6 Implementation Path

A Fisher-metric implementation requires:

1. Specify the parametric family p(x|θ) (e.g., multivariate Gaussian, mixture models)

2. Estimate parameters θ(t) at each time point

3. Compute the Fisher information matrix gij(θ(t))

4. Derive curvature from the metric

This is more demanding than the correlation-based approach but provides stronger
theoretical grounding.
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8 Implementation Architecture
A modular software architecture is specified here for testing the hypotheses and support-
ing future extensions.

8.1 System Overview

Data Ingestion Network
Construction

Curvature
Computation

Statistical
AnalysisVisualizationResults

Parameter Tuning

Figure 1: System Architecture

8.2 Existing Tools

The discrete curvature computations can leverage existing implementations:

• GraphRicciCurvature (Python): Implements Ollivier-Ricci and Forman-Ricci
curvature for NetworkX graphs

• POT (Python Optimal Transport): Efficient Wasserstein distance computation

• NetworkX / graph-tool: Network construction and analysis

8.3 Algorithm: Rolling Window Curvature

Algorithm 1 Rolling Window Network Curvature
Require: Price matrix P ∈ RT×N , window size w, threshold θ
Ensure: Time series of aggregate curvatures {κ̄t}
1: for t = w to T do
2: Rt ← LogReturns(P [t− w : t, :])
3: ρt ← CorrelationMatrix(Rt)
4: Dt ←

√
2(1− ρt)

5: Gt ← ThresholdedGraph(ρt, Dt, θ)
6: κt ← OllivierRicciCurvature(Gt)
7: κ̄t ← Mean(κt)
8: end for
9: return {κ̄t}
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Table 2: Recommended Technology Stack
Component Technology Rationale

Language Python 3.10+ Ecosystem, scientific computing
Data pandas, numpy Standard tools
Networks NetworkX, graph-tool Curvature algorithms available
Curvature GraphRicciCurvature Specialized library
Transport POT Wasserstein distance
Visualization matplotlib, plotly Interactive dashboards
Statistics scipy, statsmodels Hypothesis testing

Table 3: Geometric Economics vs. Alternative Frameworks
Approach Ontology Mathematics Crisis

Mecha-
nism

Prediction

Standard
DSGE

Equilibrium Optimization Exogenous
shocks

None (ex-post)

Network Eco-
nomics

Relational Graph theory Contagion Centrality

Agent-Based Emergent Simulation Cascades Distribution
tails

Gauge-
Theoretic

Relational Fiber bundles Arbitrage
breakdown

Connection cur-
vature

This paper Relational Riemannian ge-
ometry

Geometric in-
stability

Ricci curvature

8.4 Technology Stack

9 Comparison to Existing Approaches

9.1 What Does Geometric Economics Add?

Compared to network economics: Standard network measures (degree, centrality,
clustering) describe topology but not geometry. Curvature integrates local and global
structure, capturing whether perturbations amplify or dissipate—information not con-
tained in topological statistics.

Compared to correlation analysis: Simple correlation measures (average cor-
relation, correlation dispersion) miss the structure of correlations. Curvature detects
“bottlenecks” and fragile bridges that correlation statistics cannot see.

Compared to gauge-theoretic economics: The gauge approach focuses on arbi-
trage and price consistency; the approach presented here focuses on systemic stability.
These are complementary: gauge curvature detects arbitrage opportunities; Ricci curva-
ture detects structural fragility.

The “so what?” answer: Geometric economics provides a unified mathematical
language linking local network structure to global dynamics via established machinery
(Riemannian geometry). It generates novel predictions (curvature as fragility indicator)
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that emerge from the formalism rather than being imposed ad hoc.

10 Discussion and Conclusion
The framework presented in this paper offers a geometrically grounded approach to mea-
suring systemic fragility in financial networks. By applying discrete Ricci curvature to
correlation-based network structures, the implementation provides a quantitative indica-
tor that captures structural vulnerabilities not visible through conventional correlation
statistics or simple network topology measures.

Several aspects of the framework merit careful consideration when deploying this
approach in practice. The choice of metric specification—whether correlation-based or
derived from Fisher information—affects the resulting curvature values, though the qual-
itative behavior should remain consistent. The correlation-based metric offers computa-
tional simplicity and immediate applicability to standard financial data, while the Fisher
information metric provides stronger theoretical grounding at the cost of additional com-
plexity in parameter estimation. For initial implementation, the correlation-based ap-
proach is recommended, with Fisher information serving as a refinement for subsequent
iterations.

The framework’s handling of dimensional consistency through non-dimensionalization
ensures mathematical well-definedness, but practitioners should remain attentive to the
choice of reference values when constructing ratios and the sensitivity of results to win-
dowing parameters. The rolling window approach described in the implementation ar-
chitecture introduces a trade-off between responsiveness and stability: shorter windows
capture rapid changes in network structure but introduce noise, while longer windows
provide smoother signals at the cost of delayed detection.

It is important to maintain appropriate epistemic humility regarding the framework’s
predictive capabilities. The curvature measure captures structural fragility—the degree
to which perturbations are likely to amplify rather than dissipate—but does not predict
the timing or direction of market moves. Empirical evidence suggests that curvature
may function as a contemporaneous indicator of stress rather than a leading indicator
with positive lead time. This limitation does not diminish the framework’s value; under-
standing the geometric structure of financial interdependence remains valuable for risk
assessment and portfolio construction even without precise predictive power.

The implementation builds on mature, well-tested libraries including GraphRicciCur-
vature for discrete curvature computation and POT for optimal transport calculations.
This reliance on existing tools reduces implementation risk and allows practitioners to fo-
cus on the application-specific aspects of data ingestion, network construction, and result
interpretation. The modular architecture separates concerns cleanly, enabling indepen-
dent testing and validation of each component.

From a theoretical standpoint, the framework inherits certain limitations from its
foundations. Economic processes are typically non-ergodic, as Peters (2019) has empha-
sized, and exhibit fundamental asymmetries between gains and losses that the geodesic
framework does not fully capture. The transition from micro-level agent decisions to
macro-level manifold structure involves aggregation assumptions that remain implicit
rather than derived. These theoretical gaps do not preclude practical utility but should
inform interpretation of results.

The conservation principles proposed—accounting identities, no-arbitrage conditions,
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and budget constraints—provide partial grounding for the geometric approach but fall
short of the complete field equations that would fully specify dynamics. This incomplete-
ness is acknowledged rather than concealed; the framework is offered as a practical tool
for measuring network fragility rather than a complete theory of economic dynamics.

In conclusion, this whitepaper has presented a complete specification for implement-
ing geometric fragility measurement in financial networks. The theoretical foundations
connect the approach to established traditions in both physics and economics, while
the implementation architecture provides a concrete path to deployment. The core
hypothesis—that discrete Ricci curvature correlates with financial stress and captures
structural information beyond simple statistics—is empirically testable with the tools
and methods described. The framework represents a practical application of differential
geometric concepts to financial risk assessment, grounded in rigorous mathematics while
remaining computationally tractable for real-world use.
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A Mathematical Preliminaries

A.1 Riemannian Geometry Essentials

A Riemannian manifold is a pair (M, g) where M is a smooth manifold and g is a
smoothly varying inner product on each tangent space TpM.

The Christoffel symbols encode how vectors change under parallel transport:

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) (31)

The Riemann curvature tensor measures the failure of parallel transport to commute:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (32)

The Ricci tensor is the trace: Rµν = Rλ
µλν

The scalar curvature is the full trace: R = gµνRµν

A.2 Discrete Ricci Curvature

On a weighted graph G = (V,E,w), the Ollivier-Ricci curvature of edge (x, y) is:

κ(x, y) = 1− W1(µx, µy)

d(x, y)
(33)

where µx is a probability measure on neighbors of x, W1 is the Wasserstein-1 distance,
and d(x, y) is the edge weight.

Positive curvature indicates clustering; negative curvature indicates a bottleneck.

B Derivation of Two-Sector Curvature
For the metric ds2 = (dr1)2 + eαr

1
(dr2)2:

Let g11 = 1 and g22 = eαr
1 .

Christoffel symbols:
The only non-zero derivatives are ∂g22/∂r

1 = αeαr
1 .

Γ1
22 = −

1

2g11

∂g22
∂r1

= −α

2
eαr

1

(34)

Γ2
12 =

1

2g22

∂g22
∂r1

=
α

2
(35)

Gaussian curvature:
For a metric ds2 = (dx)2 + h(x)(dy)2, the Gaussian curvature is:

K = − 1

2
√
h

d2
√
h

dx2
(36)

With h = eαr
1 :

•
√
h = eαr

1/2
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• d
√
h

dr1
= α

2
eαr

1/2

• d2
√
h

d(r1)2
= α2

4
eαr

1/2

Therefore:
K = − 1

2eαr1/2
· α

2

4
eαr

1/2 = −α2

8
(37)

The curvature is constant and negative, characteristic of hyperbolic geometry. The
scalar curvature is R = 2K = −α2/4.
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